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Atmospheric temperature profiles can be deduced from the 

molecular density profiles assuming hydrostatic equilibrium fo r  the 

atmosphere where the density proffles can be obtained from the Rayleigh 

backscatter 1 i d a r  signal profiles. Hauchecorne and C h a n i n  1 have used 

t h i s  technique to measure temperature above 35 km a l t i tude  where aerosol 

scattering i s  considered negligible compared w i t h  Rayleigh backscattering. 

The lowest a l t i tude  a t  which temperature can be retrieved us ing  a s ingle  

wavelength l i da r  extends to  about 30 km, depending on the upper boundary 

of the stratospheric aerosol layer. 
For the case of background aerosols, Russell and Morley 2 proposed 

retrieving temperature i n  the lower stratosphere u s i n g  two wavelength 

l i d a r  signals. 

backscatter profile a t  the long wavelength, then modeling a wavelength 

conversion factor fo r  the aerosol backscatter a t  the short wavelength 

(approximately 0.35 urn). 

combined w i t h  the measured signal a t  the short. wavelength t o  yield 

molecular density prof i le  which i s  used t o  retrieve temperature. 

The technique consists of retrieving the aerosol 

The estimated aerosol backscatter prof i  1 e i s  

Error 

aiialyses o f  temperature i-etrievals from spaceborne 1 idar  have p r e v i o u s l y  

2 , 3  made. 

I n  t h i s  l e t t e r ,  differences between retrieved temperature T from 

l i d a r  and atmospheric model temperature Ts are calculated for the 

fo l lowing  problems which except for problem b below have n o t  been 

simulated so far .  

a .  Effect o f  a t ransient  t h i n  aerosol layer a t  any a l t i tude  on 

temperature retrieved by a single wavelength 1 idar. 



b. Effect o f  residual aerosols which are not perfectly corrected f o r  

using a modeled wavelength conversion factor on temperature 

retrieved by a two wavelength l i d a r .  

c. Errors due to  splicing two backscatter signals which are obtained 

seperately. 

d. Effect of multiple scattering. 
- 

Fig.1 shows l ida r  signals normalized to  the Rayleigh backscatter 

signal expected from a model atmosphere4 for  the above f o u r  cases. 

To calculate the temperature difference AT=T-T,, l i d a r  parameters used 

for  the LITE (Lidar In-Space Technology Experiment) simulations have been 3 

used. However, resul ts  denoted below can be applied t o  other l idar  

parameters if  suff ic ient  backscatter signals are  obtained. 

Fig.2 presents vertical  profiles of the temperature difference 

AT simulated for  above fou r  cases. The small temperature difference 

a t  about 50 km i s  due to  the boundary condition oftemperature,TS + 40 K ,  

assumed a t  90 km. 

a. 

The resul ts  shown i n  Fig.2 are sumnarized a s  toliows: 

A t  34 km a AT of  -8.3 K occurs due t o  the t ransient  aerosol layer 

o f  scattering r a t i o  1.04. 

zero a t  20 km. 

A t  33 km i t  i s  about 1.2 K and approaches 

I t  i s  easy t o  distinguish a transient t h i n  aerosol 

layer or noise w i t h  4 percent excess signal above expected from 

Rayleigh backscatter from retrieved temperature profile.  

Effects o f  an unknown residual aerosol backscatter of 5 1.2 % 

af fec t  the retrieved temperature by 5 -1.25 K. 

scattering r a t i o  a t  a wavelength o f  355 nm i s  a b o u t  1.04 ( 4  percent 

aerosol contribution) for background stratospheric aerosols, 

b. 

As the maximum 



c. A discontinuity of AT equal to  -4.2 K occurs a t  30 km for  

a 2 percent splicing error  constant below 30 km. A T  approaches 

to  zero exponenti a1 l y  downwards. To keep t h i  s temperature d i  s- 

continuity below 2 K ,  i t  i s  necessary to  spl ice  two l ida r  backscatter 

signals w i t h  about one percent accuracy.’ 

one photomultiplier channel and t h u s  will not use splicing i n  i t s  

data analysis. 

Effects of  multiple scattering is  assumed to  b e  4.4 percent a t  4 km 

LITE wi l l  u t i l i z e  only 

d. 
b and t o  decrease upwards i n  proportion to  atmospheric densit ies.  

The calculated temperature difference i s  - 5 K a t  4 km and approaches 

zero exponentially upwards. I t  i s  about - 1 K a t  15 km. I f  l i da r  

parameters such as receiver f ie ld  o f  view and l idar  system a l t i t ude  

are  known, the effects  o f  multiple scattering can be corrected t o  

some extent theoretical ly. 6 

From these simulations, i t  is evident that  temperature can be 

retrieved for  + - 3 K ,  i f  Rayleigh backscatter can be measured for  + - 1.5 

percent. This i s  not unreasonable for a carefully developed l i d a r  system. 

The LITE l i da r  i:: a 240 km o r b i t  aboard shut t le  sheuld be ab le  t c  make 

+ - 3 K measurements from about 10-40 km, w i t h  vertical  resolutions of 

1 km and horizontal resolutions of 300 km. 

One o f  us (0. Uchino) i s  supported by NASA Grant  No. NCC1-96. 
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Figure Capti ons . 

F i g .  1 .  Excess l i d a r  s i g n a l s  normalized t o  Rayleigh b a c k s c a t t e r  

s i g n a l s  f o r  f o u r  cases  : a. t r a n s i e n t  t h i n  aerosol  l a y e r ,  

b. residual a e r o s o l s ,  c. s p l i c i n g  e r r o r ,  and d .  mult ip le  

sca  t ter i  ng. 

Temperature difference between tempera ture  T retrieved by 

1 i d a r  and model temperature  Ts f o r  f o u r  cases  i n  Fig. 1 .  

- 
Fig. 2.  
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Abstract 

An error ana lys i s  of DIAL (Dif ferent ia l  Absorption Lidar) measurements of - - - 
s tratospheric  ozone from a Space Shuttle is discussed. 

cons i s t ing  of a KrF excimer l a s e r  pumping gas cells of H2 or D2 producing output 

wavelengths i n  the near uv is  shown to be use fu l  for the measurement of ozone i n  

an a l t i t u d e  range from 15-50 km. 

A transmitter system 



, 
I. Introduct ion 

Measurements of ozone i n  the  lower s t r a tosphe re  have been conducted using a 

1 2  
,- l i d a r  incorpora t ing  an X e C l  laser with supporting meteorological data. 

D i f f e r e n t i a l  absorpt ion l i d a r  (DIAL) measurements of ozone i n  the l o w e r  

s t r a tosphe re  have been conducted using frequency-doubled dyes pumped by a Nd:YAG 

laser.’  D I A L  measurments of ozone i n  the middle and upper s t r a tosphe re  above 25 

km a l t i t u d e  have been made using an XeCl laser pumping a ce l l  of methane gas 

producing the  f i r s t  Stokes l i n e  of methaneO4 In add i t ion ,  D I A L  measurements of 

ozone above 25 km have been conducted using the  t h i r d  harmonic of a Nd:YAG laser 

p lus  the  fundamental output of an XeCl laser .  5 

As above, D I A L  measurements of ozone appear f e a s i b l e  up t o  an a l t i t u d e  of 

50 km by a ground-based XeCl laser. However, it takes s e v e r a l  hours t o  measure 

ozone d e n s i t i e s  a t  40-45 km even if  an e f f i c i e n t  X e C l  laser is used with an 

output  energy of 250 m J  per pulse  and a r e p e t i t i o n  rate of 50 Hz.’ This is due 

t o  the  s t rong  absorpt ion of ozone below 40 km. In  the  D I A L  measurements of 

ozone from a s h u t t l e ,  t h i s  s t rong  absorption can be avoided and g loba l  data can 

be obtained i n  a s h o r t  t i m e  with high accuracies as  denoted below. The global  

da ta  w i l l  be usefu l  i n  the ana lys i s  of ozone t r anspor t  i n  the s t ra tosphere  and 

f o r  s tudying long term t r e n d s  i n  ozone. 

-_ 

This paper w i l l  c a l cu la t e  the  e r rors  assoc ia ted  with and, theref  ore ,  

expiore  the  f e a s i b i l i t y  of the measurement of s t r a t o s p h e r i c  ozone from a 

spaceborne instrument aboard s h u t t l e .  



11. Methodology of Error Analysis 

The mean ozone concentrat ion n(z)  within an a l t i t u d e  i n t e r v a l  of z and 

z l = z  + & can be obtained by the DIAL measurement as given i n  the  following: 

where 

2 '  

1 ( a R l - a  + a  - a  )dz 1 
Aa Az z R2 M I  M2 E =  

- 1 ( ~ ~ , - a  - + Z  - a  -- 
ha R2 M1 M 2  ( 3 )  -_ 

and P i ( z )  ( i = 1 , 2 )  is the  t o t a l  received number of photoelectrons from an 

a l t i t u d e  z with a small range 62, and Au i s  the d i f f e r e n t i a l  ozone absorption 

cross sec t ion  (Aa=a2 - a l l .  B i ( z )  is the  atmospheric backscat ter ing 

c o e f f i c i e n t  a t  wavelength i and a l t i t u d e  Z .  a R  and aM a r e  Rayleigh and Mie 

e x t i n c t i o n  c o e f f i c i e n t s ,  respec t ive ly .  

I 

2 



I n  genera l  the  DIAL measurement of n ( z )  is made using the  f i r s t  term' i n  

Eq. ( 1  1. For t h i s  approximation, the  relative uncer ta in ty  € = G/z can be 

expressed by 

, 

6 

2 
2 

E2= E 2+ € 
1 

where 

( 4 )  

E = (B + E)/; 2 

pb is background noise ,  

and background f l u c t u a t i o n s ,  and € 2  i s  a systematic e r r o r  due t o  the assump- 

t i o n  of B=E=O.~,' 

€ 1  denotes a s ta t is t ical  e r r o r  due t o  the- s i g n a l  

As the  two wavelengths can be emitted simultaneously,  the 

e r r o r s  due t o  temporal va r i a t ions  of B and E are not taken i n t o  account. 

111. Lidar System Parameters 
-_ 

Figure 1 d e p i c t s  the t r ansmi t t e r  system f o r  the proposed DIAL system. A 

KrF l a s e r  pumping gas cel l  of e i t h e r  H2 or D2 produces four  wavelengths; the 

fundamental of KrF p lus  three Stokes l i n e s  of H2 or D2.*, The output 

energy of the KrF laser is 300 m J  w i t h  a pulse width of 10-20 ns and a pulse  

r e p e t i t i o n  frequency of 100 Hz. The energy conversion e f f i c i e n c i e s  of these 

Stokes l i n e s  S1,  S2, and S3 a r e  assumed t o  be 20, 20, and 10 percent ,  

respec t ive ly .  0-12 

Inn and Tanaka13, the U . S .  Standard Atmosphere14, and a mid-lati tude ozone pro- 

In  these s imulat ions,  ozone absorpt ion c ross  sec t ions  from 

f i l e "  a r e  used, and the aerosol  models employed a re  taken from S h e t t l e  and 

Fenn . 16 



IV. Simulation 

The total  number of s i g n a l  photoelectrons P i ( Z ) ,  f o r  a v e r t i c a l  range of 

1 km (62x1 Jan) and the  output  energies  shown i n  T a b l e  I, are shown i n  Fig. 2. 

The to t a l  sho t  number of laser pulses  is 10,000 shots .  From the f igu re ,  it i s  

clear that photoelectron counters should be used f o r  the  de t ec t ion  system. A 

f a s t  speed counter  and photomult ipl ier  tube (PMT) with f a s t  rise t i m e  having a 

counting l i n e a r i t y  up to  about 50 photoelectrons per sho t  f o r  a t i m e  ga te  i n t e r -  

v a l  of 6.66 us ( 6 2 4  ~III) ’~ is required.  

Figure 3 shows the  error a n a l y s i s  f o r  the wavelength pairs cons is t ing  of 

the  KrF laser and H2 cell. The hor izonta l  r e so lu t ion  is 800 km (10 shots  a t  

100 Hz). The vertical reso lu t ion  is 1 km (6z=&=1 km) b e l o w  50 km a l t i t u d e  and 

2 km (62=&==2 km) above it. The s o l i d  l i nes  i n  the f i g u r e  show the r e l a t i v e  

u n c e r t a i n t i e s  f o r  a moonless nighttime when the total number of photoelectrons 

due to background noise  is below 5 i n  the wavelength range of 248-360 nm. l 8  

dashed l i n e s  show the unce r t a in t i e s  f o r  a case of higher  noise-occurrence- 

p r o b a b i l i t i e s  of 0.1 background photoelectron per sho t  f o r  a wavelength region 

of 248 - 313 nm, 0.2 background photoelectron per sho t  f o r  =320nm, and 0.5 back- 

ground photoelectrons per  sho t  f o r  =360 nm. The kinks i n  the  l i n e  arouni- 50 km 

i n  the f i g u r e  a r e  due to  ths di f fe rance  of vertical r e s d u t i o n  &ove a d  b l e w  

50 km. 

4 

The 

For the  wavelength pairs of 248.4 - 31 3.0 nm and 277.0 - 31 3.0 nm, the 

r e l a t i v e  u n c e r t a i n t i e s  of ozone d e n s i t i e s  measured by the  D I A L  technique a r e  

within 10 percent  f o r  37 - 48 km a l t i t u d e  for  a moonless nighttime. In  t h i s  

a l t i t u d e  range, the errors due t o  neglecting B and E a r e  l e s s  than 0.3 percent .  

I f  the output  energies  a t  these wavelengths are increased by a f a c t o r  of 2, the 

r e l a t i v e  u n c e r t a i n t i e s  a r e  decreased by a f ac to r  of f 2 .  These wavelength p a i r s  

are most use fu l  f o r  ozone measurements i n  the region of 40-45 km where the 

e f f e c t  of CFM’s on the long term ozone concentration is considered t o  be la rge .  

4 



The wavelength pair of 313.0 - 359.8 m is ava i l ab le  f o r  ozone measutementk 

i n  the lower a l t i t u d e  range of 12 - 27 km. I n  t h i s  case, the errors i n  n ( z )  due 

t o  neglect ing the  term ‘LR1 - aR2 i n  EQ. (3) are Large below 18 km a l t i t u d e .  

The dot ted l i n e  i n  Fig. 3 shows the  r e l a t i v e  unce r t a in t i e s  of ozone d e n s i t i e s  

ca lcu la ted  by using E* ins tead  of E i n  4. (6) here  E’=(0.25 x (&1+2) + 

(‘LM1 - aM2))/Au, and n is estimated by the f i r s t  t e r m  i n  Eq. (1 1 plus 

(;ER1- aR2)/Au. 

atmospheric dens i ty .  

- 

- 
- 

The f a c t o r  0.25 corresponds t o  a standard devia t ion  of 

14 

The r e l a t i v e  unce r t a in t i e s  of the  DIAL measurement of ozone increase  i n  the  

a l t i t u d e  range 27 - 34 lune This can be overcome by using a gas cel l  of Dp 

ins tead  of H2. Figure  4 shows the r e l a t i v e  unce r t a in t i e s  of the  D I A L  measure- 

ment of ozone using the  s t imulated Raman s c a t t e r i n g  l i n e s  of D 2 .  

l i n e s  i n  the  f i g u r e  show the  relative unce r t a in t i e s  f o r  a moonless n ight ,  and 

the  dashed l i n e s  show t h e m  f o r  a case of higher noise-occurrence-probabili t ies 

as mentioned above. As can be seen, the wavelength p a i r  291.8 - 319.6 nm is 

usefu l  f o r  the D I A L  measurement of ozone in an a l t i t u d e  range of 25 - 40 km. 

Figures 3 and 4 show t h a t  i f  gas c e l l s  of H2 and Dp a r e  pumped simultaneously by 

a high powered KrF laser, accurate  D I A L  measurements of ozone a r e  pssiG1e i n  an 

a l t i t u d e  range ef 15 - 50 kz~ us i f i s  these ca&inatians of wzvelengths. 

A. Ef fec t  of Aerosol 

The s o l i d  

S t r a tosphe r i c  aerosols  w i l l  have an e f f e c t  on D I A L  ozone r e t r i e v a l s  a t  t h e  

a l t i t u d e s  where they r e s ide ,  approximately from the tropopause to  10 km above 

the  tropopause. The magnitude of t h e i r  e f f e c t  will depend of course on the  

amount present  i n  the  s t r a tosphe re  which is dependent on volcanic perturba- 

t ions .  E f fec t s  of the  aerosol  model assumed i n  the  s imulat ions on the t o t a l  

s 



e r r o r s  for the wavelength pair of 31 3.0 - 359.8 m have been analyzed. Figure 5 

shows th ree  ae roso l  models f o r  313.0 nm: background, aged volcanic ,  and f r e s h  

volcanic.16 The r e s u l t s  of the uncer ta in t ies  i n  ozone d e n s i t y  f o r  these models 

are shown i n  Fig. 6 ,  where E' is a l s o  used t o  c a l c u l a t e  c2. For the f r e s h  vol-' 

can ic  aerosol  model (dashed l i n e ) ,  the r e l a t i v e  uncer ta in ty  is large.  The mini- 

mum of the  unce r t a in ty  around 19 Ian is due to an assumption t h a t  the  ae roso l s  

a r e  cons tan t  v e r t i c a l l y  i n  s p i t e  of the maximum of the content .  In  this case, 

the following procedure might decrease the  uncertainty.  The ae roso l  d i s t r i b u -  

t i o n  is f i r s t  obtained from the  wavelength of 359.8 MI. Then the e f f e c t s  of 

aerosols  on the  313.0 MI wavelength a re  extrapolated from 359.8 nm. 

a r e  also encountered i n  the D I A L  measurement of ozone i n  the boundary layer .  

Unfortunately,  both f r e sh  volcanic  aerosols  and boundary l a y e r  aerosols  a r e  

d i f f i c u l t  to model. Another method to decrease the  e r r o r s  is to  use an appro- 

These cases 

19 

- 
p r i a t e  wavelength pa i r -wi th  a small d i f fe rence  of wavelength. 4 

B. Effec t  of temperature 

The ozone absorption c ross  sec t ions  are temperature dependent. Figure 7 

shows the r e l a t i v e  va r i a t ions  of the  absorption cross sec t ions  a t  seven wave- 

lengths  i n  a temperature range 214-291 KO2' 

laser kavelen j ths  lised f o r  L\e D I U  sirnulatiens. I n  the wavelengths s h c r t e r  

than 291.4 nm, the  r e l a t i v e  temperature var ia t ions  of the  c ros s  sec t ions  a r e  

seve ra l  pe rcen t ,  but  they are 20-30 percent i n  the wavelengths longer than 

300 nm. 

Eq. ( 4 ) ,  where 

These wavelengths a r e  near-&e 

2 For the cross  sec t ion  va r i a t ions ,  an add i t iona l  term €3 is included i n  



2 Aul 2 Aul 2 Au2 2 Aa2 2 
1 1 + (-1 (--- 

AG 

2 E 3 = ( T  a 1 ( y  U U 
1 = ( -  

2 

1 

, 

(7) 

For the wavelength p a i r s  used f o r  the simulations so f a r ,  it w a s  approximated 

t h a t  ul/u-l  and a2/o - < 0.1. Therefore,  i n  s p i t e  of the  l a r g e  temperature 

v a r i a t i o n s  of 0 2 ,  C2 is  roughly equal to or smaller than 2 ( A u 1 / ~ q ) ~ .  To obta in  

the  ozone dens i ty  with a high accuracy, therefore ,  it w i l l  be necessary t o  meas- 

u r e  temperature with an accuracy of 5-10 K, 

3 

Figure 8 shows the  U.S. Standard Atmosphere model of temperature, Ts. 

The arrows i n  the  f i g u r e  show the l o w e s t  and h ighes t  mean monthly temperatures 

obtained f o r  any loca t ion  between the Equator and pole. l4 

t u re s  w i l l  change g r e a t l y  during a s h u t t l e  o r b i t  covering both hemispheres. 

Temperature r e t r i e v a l s  from the non-DIAL or backscat ter  l i d a r  measurements a t  

359.8 nm are obtained by using the  p e r f e c t  gas l a w  and hydros t a t i c  e q u i l i -  

brium.'l 

of ae roso l s  is neglected above 30 Ian. As a boundary condi t ion of temper%ture, 

two cases of ~ , + 4 0  K ( s o l i d  l i n e  ( 1 )  t o  r i g h t  of center  l i n e )  and Ts - 60 K 

( s o l i d  l i n e  ( 2 )  t o  l e f t )  a t  90 km a r e  assumed. As shown i n  the  f igu re ,  devia- 

t ions  from the  model (center  l i n e )  are very small below 65 lan a l t i t u d e  f o r  the  

two boundary conditions.  A t  60 km, f o r  example, t h i s  d i f f e rence  is l e s s  than 

0.7K. Temperature r e t r i e v a l s  below 60 km, therefore ,  do not  depend on the 

boundary condi t ions .21 

wavelength. 

Atmospheric tempera- 

The U.S. atmosphere model is a l s o  used f o r  the s imulat ion.  The e f f e c t  

These measurements a r e  accomplished with only one 

7 



Figure 9 shows the  accuracy i n  temperature measurements f o r  var ious output 1 

energies  per pulse  using the above one wavelength technique. The boundary 

condi t ion of temperature a t  90 k q  is assumed to  be T,+40 K. 

r e so lu t ions  are 1 km (6z=Az=l Ian) below 50 kxa a l t i t u d e  and 2 km (6z=Az=2 km) 

The vertical 

above it. AS the  output  energy of the laser increases ,  measurement e r r o r s  of 

temperature decrease.  Even f o r  l o w  output  energies ,  it appears poss ib l e  to 

measure v e r t i c a l  d i s t r i b u t i o n s  of temperature with an accuracy of 2-5 K i n  t he  

region of 40 km a l t i t u d e .  Simulations of temperature r e t r i e v a l s  f o r  LITE (Lidar  

In-Space Technology Experiment), f o r  example, using the  t r i p l e d  wavelength of a 

Nd:YAG laser (355 nm) shows s imi l a r  r e s u l t s  i n  t h a t  temperatures can be 

r e t r i e v e d  t o  f3K between 15 and 30 km during background ae roso l  condi t ions.  22 

V. Conclusion 

A s h u t t l e  l idar  system based on a KrF excimer l a s e r  pumping a Raman c e l l  of 

H 2  or D 2  producing the fundamental wavelength and the  Stokes l i n e s  of H 2  and D 2  

a r e  shown t o  provide an accuracy usefu l  f o r  the  D I A L  measurement of ozone i n  the  

middle and upper s t ra tosphere .  The r e l a t i v e  u n c e r t a i n t i e s  of ozone d e n s i t i e s  

measured a t  n igh t  by t h i s  D I A L  system a re  within 10 percent  i n  the  a l t i t u d e  

range 30-47 ?un with a v e r t i c a l  reso lu t ion  of 1 km and a ho r i zon ta l  resol i i t ion of 

800 km, For a czae nf v e r t i c a l  reso lu t ion  of 3 km (&=3 km, 62-1 km! with the 

same h o r i z o n t a l  reso lu t ion ,  the r e l a t i v e  unce r t a in t i e s  of ozone d e n s i t i e s  w i l l  

be reduced to  2-3 percent.  The e r r o r s  due t o  temperature dependence of the 

absorpt ion c ros s  sec t ion  of ozone w i l l  be smaller than 1 percent  s ince  atmos- 

pher ic  temperature can be measured within 10 K using a wavelength of 359.8 nm. 

D I A L  measurements of ozone i n  the lower s t ra tosphere  using t h i s  s h u t t l e  l i d a r  

system depend on aerosol  loading and our understanding of aerosols .  For the 

increased l e v e l s  of s t r a tosphe r i c  aerosols  experienced a f t e r  v io l en t  volcanic 

e rupt ions ,  t h e  relative unce r t a in t i e s  of ozone d e n s i t i e s  w i l l  be l a rge  i n  the  

region b e l o w  about 24 km. D I A L  measurements of ozone with good accuracy w i l l  be 

9 



useful  f o r  increasing our understanding of ozone i n  the middle and upper I 

stratosphere . 
One of us (0. Uchino) is supported by NASA Grant No.  NCCl-96 .  
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Fig. 1 

Fig. 2 

Fig. 3 

Fig. 4 

Fig. 5 

Fig. 6 

Fig. 7 

Fig. a 

Fig. 9 

Figure Captions I 

Depiction of D I A L  t r ansmi t t e r  system. S i  = the  i t h  Stokes l ine .  H2 

is hydrogen, D2 deuterium. 

Tota l  number of s i g n a l  photoelectrons ca lcu la ted  by using the  l i d a r  

system i n  Table 1 .  

Uncertainty of ozone dens i ty  measured by D I A L  system using f o r  KrF laser 

fundamental and SRS of H2. 

Uncertainty of ozone dens i ty  measured by DIAL system using f o r  KrF laser 

fundamental and SRS of D2. 

M o d e l  ex t inc t ion  c o e f f i c i e n t s  a t  a wavelength of 313.0 nm. 

Uncertainty of ozone dens i ty  measured by D I A L  f o r  the three  aerosol  

models i n  Fig. 5. 

Temperature va r i a t ions  of absorption c ros s  sec t ions  a t  seven wavelengths 

r e l a t i v e  t o  291 K. 

Temperature model and r e t r i e v a l s  from backsca t te r  measurements a t  359.8 

nm f o r  two.boundary condi t ions a t  90 km: ( 1 )  Ts + 40 K, and ( 2 )  

20 

T s  - 60 K. 

Temperature accuracy measured a t  a wavelength of 359.8 nm f o r  d i3 fe ren t  

laser o-ctput energ ies i  Dotted l i n e  shows temperature accuracy f o r  

i nc reas ing  quantum e f f i c i e n c y  to 0.25 and the  o p t i c a l  e f f i c i ency  t o  

0.20 f o r  a l a s e r  output  energy of 0.4 joules .  
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ATMOSPHERIC OZONE MEASUREMENTS BY EXCIMER LIDARS 

0. Uchino*, M. Maeda', and T. Shibata' 
I x . 5 9  -:,- ' .  , .;. 

*NASA Langley Research Center, Mail Stop 475 
Hampton, VA 23666, USA 

'Department of E l e c t r i c a l  Engineering, Kyushu Univers i ty  , 
Hakozaki, Fukuoka 812, Japan 

Using an XeCl l i d a r ,  the f i r s t  measurement o f  the v e r t i c a l  d i s t r i b u t i o n  o f  
the stratospher ic ozone was made a t  Fukuoka (33'N, 130'E) i n  Ju ly  1978 (Uchino e t  
a1 . , 1978). The method i s  a one-wavelength-absorption l i d a r  w i th  supporting 
meteorological data. Atmospheric molecular densi t ies were obtained w i th  d a i l y  
meteorological radiosondes. The e f f e c t  o f  the stratospher ic aerosol s on the 
measured ozone concentrations was corrected using data of sca t te r i ng  r a t i o s  
observed by a ruby l i d a r .  The method was promising f o r  the continuous monitor ing 
o f  the s t ra tospher ic  ozone concentrat ion (Uchino e t  a1 . , 1979). 

W i t h  a more compact and r e l i a b l e  XeCl laser,  continuous ozone monitor ing has 
been made a t  Fukuoka since September 1979 (Uchino e t  al., 1980). About f i f t y  
data sets were obtained. Figure 1 shows a t yp i ca l  data o f  the ozone 
concentrations. A t  around 20-25 km the measured errors  are about 10 percent. 
Above t h i s  he ight  range, the errors  increase owing t o  decrease o f  the signal. 
an a l t i t u d e  o f  15 km they increase up t o  10-20 percent due to decrease o f  the 
ozone concentrat ions and the e f f e c t  o f  the aerosols. 

A t  

F igure 2 shows the co r re la t i on  between ozone mass mixing r a t i o  measured by 
the XeCl 1 i dar and temperature obtained by radiosondes a t  Fukuoka Meteorological 
Agency. The ozone mixing r a t i o  has a h igh c o r r e l a t i o n  w i th  the temperature. 
This r e s u l t  i s  i n  good agreement with those obtained by ozonesondes a t  Tateno 
(36.1°N, 140.1'E) (Uchino e t  a1 ., 1983a). 

The e f f e c t  o f  the stratospher ic aerosol l aye r  on the ozone concentrat ions 
was ca lcu lated from the scat ter ing r a t i o  data obtained by a frequency doubled 
Nd:YAG l i d a r ,  and estimated t o  be 10-20 percent i n  an a l t i t u d e  range o f  15-20 km 
dur ing 1979-1981 (Uchino e t  al., 1980). After the v i o l e n t  volcanic eruptions o f  
M t .  E l  Chichon i n  ear ly  A p r i l  1982, the concentrations of the aerosols increased 
by a fac to r  o f  100 compared with those i n  the background leve l .  
and va r iab le  aerosols, we developed a high power XeCl l ase r  pumping a dye c e l l  o f  
p-terphenyl producing two wavelengths o f  340.5 nm and 308 nm simultaneously. 

For these many 

Figure 3 shows the scat ter ing r a t i o  p ro f i l es  a t  340.5 nm calcu lated by an 
i t e r a t i v e  method. A parameter of A i s  a r a t i o  o f  e x t i n c t i o n  c o e f f i c i e n t  t o  
backscatter ing c o e f f i c i e n t  o f  the aerosols. The maximum scat ter ing r a t i o  d i f f e r s  
f r o m  about 18 percent a t  an a l t i t u d e  o f  25 km f o r  three values of A (Uchino, e t  
al. ,  1984). A value o f  22.7 was used f o r  a bimodal s ize d i s t r i b u t i o n  measured by 
an op t i ca l  counter i n  October 1982 and assuming 75 percent s u l f u r i c  ac id  
pa r t i c l es .  The backscattering coe f f i c i en t  and e x t i n c t i o n  c o e f f i c i e n t  a t  308 nm 
were estimated from these data using Mie theory. 

* V i  s i  ti ng Senior Research S c i e n t i s t  from Meteorological 
Research I n s t i t u t e ,  Tsukuba, Ibarak i  305, Japan 
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Figure 4 shows the ozone concentrations measured by t h i s  method. The f luc-  
It might be the tua t i on  o f  the data i s  l a rge  i n  an a l t i t u d e  range o f  23- 26 km. 

inhomogeneous aerosol s (Pel on and Megie, 1982; Browel 1 e t  a1 . , 1985) and an 
uncertainty o f  the op t i ca l  model o f  the aerosol s. For i ncreased st ra tospher ic  
aerosols, a l i d a r  w i th  a wavelength p a i r  o f  308 n and 313 nm i s  appropriate as 
shown l a t e r .  

As the ozone concentrations decrease i n  the troposphere, shorter wave1 engths 
A high power KrF laser  was developed f o r  pumping a c e l l  o f  methane are required. 

gas. Emission o f  the second Stokes l i n e  (290.4 nm) o f  Stimulated Raman sca t te r -  
i n g  (SRS) from methane and a XeCl l ase r  (308 nm) was used f o r  two-wavelength 
sources (Uchi no e t  a1 , 1983b). 

The ozone concentrations measured by t h i s  DIAL system are shown i n  Fig. 5. 
The Rayleigh component o f  the op t i ca l  thickness was ca lcu lated from atmospheric 
mol ecul a r  densi t ies obtained by a radiosonde a t  Fukuoka Meteorol ogical  Agency. 
The di f ferences of the backscattering coe f f i c i en ts  and the Mie component o f  the 
opt ica l  thickness f o r  the two wavelengths were neglected. The errors  due t o  
these neglects were estimated t o  be 1-2 percent above 4 km f o r  a t y p i c a l  aerosol 
model. For more accurate estimation o f  errors due t o  the aerosols,' an aerosol 
measurement a t  a t h i r d  wavelength i s  available. 

I n  the DIAL system, the output energy o f  290.4 nm was r e l a t i v e l y  low  
(2-4mJ). To obtain more e f f i c i e n t  SRS, we f u r t h e r  developed a high power K r f  
l ase r  with an automatic uv p re ion i za t i on  (Shibata e t  a1 . , 1985). 
power was increased by a fac to r  o f  two compared w i t h  the former KrF laser, and 
the energy conversion e f f i c i e n c i e s  o f  the Stokes l i n e s  o f  hydrogen gas and 
methane gas were improved as shown i n  Fig. 6. 

The output 

I n  Table 1 performances o f  current  l i d a r  system are shown. 
p u t  energy per pulse o f  these SRS and excimer lasers are also shown. 
shows the ozone p r o f i l e  observed on December 7, 1984. 
observe each a l t i t u d e  range are also shown. 
percent except 13 - 18 km. 

The.maximum out- 
Figure 7 

The wavelengths used t o  
The measurement e r r o r  are w i t h i n  30 

As conclusions, an XeCl l i d a r  with supporting meteorological data i s  useful 
f o r  the Stratospher ic ozone measurement f o r  the background aerosols. 
upper stratosphere, a wavelength p a i r  o f  XeCl and SRS o f  methane o r  hydrogen gas 
i s  promi s ing (Werner e t  a1 . , 1983) 

I n  the 

For increased stratospher ic aerosols, a l i d a r  w i th  a wavelength p a i r  o f  
308 nm and 313 nm i s  appl i cab le  a1 though the v e r t i c a l  reso lu t i on  i s  two times 
lower #an t h a t  o f  an XeCl l i d a r .  

For the tropospheric ozone measurements, excimer lasers and SRS pumped by 
excimer 1 asers are useful.  These 1 i dar systems are comparatively simple conf i gu- 
ra t i ons  and they have p o s s i b i l i t i e s  o f  a high average power and a high r e p e t i t i o n  
r a t e .  
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FIGURE CAPTIONS 

Fig. 1 Ozone concentrat ions and t h e i r  standard deviat ions measured by an XeCl 
l i d a r .  

Fig. 2 Corre la t ion between ozone mass mixing r a t i o  measured by an XeCl l i d a r  and 
temperature obta i  ned by radiosondes a t  Fukuoka Meteorological Agency. 

Fig. 3 Vert ica l  p r o f i l e s  o f  scat ter ing r a t i o  a t  a wavelength o f  340.5 nm f o r  
three values o f  A. 

Fig. 4 Ozone concentrat ions measured by two wavelengths o f  308 nm and 340.5 nm. 

Fig. 5 Ozone concentrations and t h e i r  standard deviat ions measured by two 
wavelengths o f  290.9 nm and 308 nm. 

Fig. 6 Energy conversion e f f i c i e n c i e s  o f  H2 and CH4. 

Fig. 7 Ozone concentrat ion measured by l i d a r  system i n  Table 1. 
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